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Abstract. [Context and Motivation] Online user feedback provides
valuable information to support requirements engineering (RE). How-
ever, analysing online user feedback is challenging due to its large vol-
ume and noise. Large language models (LLMs) show strong potential
to automate this process and outperform previous techniques. They can
also enable new tasks, such as generating requirements specifications.
[Question/Problem] Despite their potential, the use of LLMs to anal-
yse user feedback for RE remains underexplored. Existing studies offer
limited empirical evidence, lack thorough evaluation, and rarely provide
replication packages, undermining validity and reproducibility. [Princi-
pal Idea/Results] We evaluate five lightweight open-source LLMs on
three RE tasks: user request classification, NFR classification, and re-
quirements specification generation. Classification performance was mea-
sured on two feedback datasets, and specification quality via human
evaluation. LLMs achieved moderate-to-high classification accuracy (F1
~ 0.47-0.68) and moderately high specification quality (mean =~ 3/5).
[Contributions] We newly explore lightweight LLMs for feedback-driven
requirements development. Our contributions are: (i) an empirical eval-
uation of lightweight LLMs on three RE tasks, (ii) a replication package,
and (iii) insights into their capabilities and limitations for RE.

Keywords: Requirements Engineering - User Feedback - Empirical Study
- AT4RE - NLP - Mining Software Repository - Large Language Models.
1 Introduction

Online user feedback is a valuable source of information that supports various re-
quirements engineering (RE) tasks [I2/I5]. Such feedback often provides insights
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into bug reports, feature requests, and non-functional requirements (NFRs) [I1].
However, manually analyzing this feedback is difficult because of its large vol-
ume and noisy nature [2J28]. Automating this analysis could help practitioners
identify user needs and document requirements more effectively.

Numerous approaches have been proposed to analyze user feedback using
natural language processing (NLP) and machine learning (ML) techniques for
tasks such as classification and opinion mining [IT/I3]. However, these methods
often overlook key RE tasks, such as generating requirements specifications;
their effectiveness remains limited in tasks like NFR categorization, essential for
addressing software quality attributes such as security and usability [I7].

Recent advances in large language models (LLMs) create new opportunities
to address these limitations [4I4)31]. LLMs perform well in classification [3],
summarization, and text generation [T9I8]. Their use in RE has been explored for
tasks such as traceability and ambiguity detection but remains limited for lever-
aging user feedback, particularly for generating requirements specifications [33].
Most existing studies rely on commercial, resource-intensive models and lack
systematic evaluation or replication packages, reducing reproducibility [TJIT].

The goal of this research is to address prior limitations and explore lightweight
open-source LLMs for automating online user feedback analysis in support of
RE tasks. More specifically, we empirically evaluate five lightweight open-source
LLMs using five prompting strategies on three RE tasks: classifying feedback by
user request type, classifying by NFR type, and generating requirement specifi-
cations. Classification uses two annotated user feedback datasets, while specifi-
cation quality is assessed through human evaluation.

The main contributions are: (i) an empirical study of lightweight LLMs on
three RE tasks using user feedback, (ii) a replication package [26], and (iii) in-
sights into the capabilities and limits of lightweight LLMs in RE. To our knowl-
edge, this is the first empirical study of lightweight LLMs for feedback-driven
requirements development, supported by a replication package [T1I33].

The remainder of this paper is as follows. Sect. [2] introduces the terminol-
ogy and problem, followed by an overview of the selected LLMs and prompting
strategies. Sect. [3] presents the motivating scenarios, Sect. ] details the study
design, and Sect. [§ reports the results. Sect. [] discusses the findings and, Sect. [7]
details threats to validity. Sect. 8] reviews related work, and Sect. [9] concludes
the paper.

2 Background

We now define key terms, formulate the problems of user feedback classification
and requirements specification; and outline approaches we selected in our study.

2.1 Terminology and Problem Formulation

Definition 1 (User Feedback). A user feedback instance is denoted as r,
representing a textual message written by a user about an application. The set
of all feedback messages for an application a is R = {ry,ra, ..., }.
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This study focuses on app reviews, a form of user feedback from mobile
platforms (e.g., Google Play Store). Such feedback conveys diverse information
useful for RE; in this work, we particularly focus on user requests and NFRs.
Definition 2 (User Request). A user request ¢y is an expressed intent in a
feedback instance, which can be of a type feature request, or bug report.
Definition 3 (Non-Functional Requirement). A non-functional require-
ment typgr is a reference in a feedback instance to one of the eight quality
attributes of the application (e.g., usability) as defined in ISO/TEC 25010 [20].

Our study addresses two main problems: user feedback classification and
requirements specification, as defined below.

Problem 1 (User Feedback Classification). Given a set of user feedback
instances R = {r} for an application a, find a multi-set C' = {t}, where ¢ is an
information type assigned to a feedback instance » € R. The type classification
is performed either on user-request types tyr or on NFR types typr, each with
an additional other category to capture feedback outside these types.
Problem 2 (Requirements Specification Generation). Given a set of user
feedback instances R = {r} for an application a and their associated information
types C = {t}, generate a set of requirement statement S = {s}, where each s
is a written statement that formalizes or summarizes the user needs expressed
in one or more feedback instances r € R.

2.2 Large Language Models

Large Language Models (LLMs) are neural networks trained on large text cor-
pora [I814]. They show strong performance in reasoning, summarization, and
text generation [4133]. Commercial models such as GPT-4, Claude, and Gem-
ini are widely used in both industry and research. However, they are resource-
intensive, provider-dependent, and difficult to customize. These characteristics
limit their suitability for controlled research and small-scale SE projects.
Lightweight open-source LLMs provide a practical alternative. They contain
fewer parameters and require less computational power. As a result, they can run
efficiently on local machines. Their open and adaptable nature also makes them
suitable for small-company projects and open-science research. Recent advances
in such models have created new opportunities to explore their potential in RE.
In this study, we focus on five open-source lightweight LLMs: Llama 2, Llama
3, Mistral, Gemma 2, and Phi-3 Mini. For simplicity, we refer to these lightweight
LLMs simply as LLMs throughout the paper. We selected these models from
major Al developers as a representative set of open-source lightweight LLMs for
RE experimentation. They differ in size and reasoning capability but can all be
executed locally. The aim was to examine their performance and behavior rather
than identify the best model. Table [[] summarises the LLMs used in our study.
Model refers to the model name, and Developer to the releasing organisation.
Parameters (in billions) indicate the number of trainable weights, reflecting each
model’s capacity and computational cost. The Context window shows how much
text the model can process in one input, measured in tokens; larger windows
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Table 1. Lightweight open-source LLMs used in our study.

Model Developer Parameters | Context Window | Usage
Llama 2 Meta Al 7B 4K Research
Llama 3 Meta Al 8B 8K Research
Mistral Mistral AT 7B 8K Open
Gemma 2 | Google DeepMind 9B 8K Open
Phi-3 Mini | Microsoft 3.8B 4K Open

support longer and more coherent inputs. Usage distinguishes models available
for open access from those restricted to research.

Interaction with LLMs occurs through prompts [6], which are textual in-
structions that define the task and expected output [33]. The way a prompt is
formulated, referred to as a prompt strategy, strongly influences the quality of
the generated results [32]. Our study examines five representative strategies, as
shown in Table 2] The Zero shot approach uses only task descriptions, while
Few shot prompting provides a small set of labeled examples. Chain of thought
prompts encourage step-by-step reasoning, which improves interpretability. Con-
straint based prompts introduce explicit rules to ensure structured and consistent
outputs. Finally, Role based prompts assign the model a specific persona so that
its responses align with relevant professional or contextual expectations.

Table 2. Overview of prompt strategies used in our study.

Prompt Strategy |Description and Example
Description: A brief instruction describes the task, assuming the model
can generalise from its pre-trained knowledge to perform it.

Zero-shot - -
ero-sho Example: “Classify the following user feedback as a feature request, bug
report, or usability issue.”
Description: A few labelled examples show the desired pattern, assuming
Few-shot the model will apply it to new inputs.

Example: “Example 1: ‘Add dark mode’ — Feature Request. Example 2:
‘App crashes on login’” — Bug Report. Now classify the next five items.”
Description: The model is instructed to reason step by step and write
intermediate steps before giving the final answer.

Example: “Explain why this user comment indicates a performance issue,
then label it as an NFR.”

Description: Prompts include explicit rules, templates, or conditions that
the output must follow.

Example: “Generate requirements that are testable, unambiguous, and
measurable.”

Description: The model is assigned a specific role and responds using the
perspective, tone, and knowledge expected from it.

Example: “You are a requirements analyst. Rewrite the following user
request as a formal functional requirement.”

Chain-of-thought

Constraint-based

Role-based

3 Motivating Scenarios

We present three scenarios illustrating how feedback classification and require-
ments generation support RE, inspired by real cases [2], and prior studies [I1].
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Scenario 1 (Supporting Requirements Elicitation). App reviews often
contain implicit requirements expressed as feature requests or bug reports [12].
Understanding these helps product teams capture evolving user needs, identify
emerging issues, and plan product improvements. As an example, imagine that
after releasing a new version of WhatsApp, the team wants to identify prob-
lems users mention in their reviews (e.g., “messages fail to send”) and desired
features (e.g., “add message scheduling”). Automatically classifying app reviews
by request type helps teams quickly identify user needs, while quantifying the
feedback shows their user-perceived importance.
Scenario 2 (Supporting Requirements Classification). Beyond identifying
request types, the WhatsApp development team also wants to understand which
non-functional qualities users discuss [I1]. Feedback such as “too slow to open”
or “confusing chat layout” reflects concerns about performance and usability.
Automatically classifying feedback by referenced NFRs helps developers identify
which quality attributes users value most, revealing whether users are more
concerned with performance or usability. This supports task prioritization and
helps balance new features with quality improvements.
Scenario 3 (Supporting Requirements Specification). After identifying
and classifying requirements from WhatsApp user feedback, analysts may want
to document them clearly and consistently. Translating informal comments into
structured requirements is time-consuming and error-prone [2]. For example,
feedback such as “add dark mode” can be reformulated as “The system shall
provide a dark mode option”. Although such documentation may not produce
complete specifications, automating it can provide initial drafts that accelerate
refinement and maintain traceability with user feedback.

For these scenarios, a tool that classifies user feedback and generates require-
ments could help the team evolve their app more effectively.

4 Empirical Study Design

This section presents the empirical study conducted to evaluate the effectiveness
of LLMs in analysing online user feedback to support RE.

4.1 Research Questions

The goal of this study is to evaluate LLMs in analysing online user feedback to
support RE tasks. We specifically focus on three research questions:

— RQ1: How well do LLMs classify feedback by NFRs type?
— RQ2: How well do LLMs classify feedback by user-request type?
— RQ3: How well do LLMs generate requirements specifications?

In RQ1, we assess the models’ ability to identify the NFR type mentioned
in user reviews. RQ2 examines how accurately the models classify user feedback
by request type. RQ3 evaluates their capability to generate requirements speci-
fications from the same feedback. All evaluations use human-annotated datasets
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(see Sect. . For RQ1-RQ2, model predictions are compared with annotations
using precision, recall, and F1-score. For RQ3, SRSs generated from sampled re-
views are assessed through human judgment based on predefined quality criteria.

4.2 Datasets

We use two annotated datasets of mobile app user feedback from prior stud-
ies [23]. We selected them for their relevance and inclusion in a public reposi-
tory [II]. Each contains thousands of reviews from about a dozen apps across
varied domains and both major app stores. This diversity mitigates the app
sampling problem and supports validity [IT].

User Request Dataset. The first dataset builds on previous studies [7)24]
and includes additional user feedback collected for this study [2I]. The initial
collected dataset covered about 10 mobile applications across more than 10 cat-
egories from both the Apple App Store and Google Play Store. From an initial
pool of the collected reviews, a curated subset of 2,912 was manually anno-
tated into three user request types: feature requests, bug reports, and other.
This dataset provides a diverse and representative sample of user feedback for
evaluating automated classification approaches

Non-Functional Requirements (NFR) Dataset. The second dataset, intro-
duced by Lu and Liang [23], focuses on app reviews annotated with NFR types
based on the software quality model [20]. The initial collected dataset comprised
approximately 11,000 app reviews from two mobile applications in the books
and communications categories. These reviews were drawn from both major app
stores, the Apple App Store and Google Play Store. A subset of 4,000 review
sentences was manually annotated according to five NFR categories.

4.3 Evaluation Metrics and Criteria

We applied both quantitative and qualitative methods. Standard ML metrics [I0]
were used for RQ1 and RQ2, as feedback classification is a classification task [16].
Specification generation (RQ3) was evaluated via criteria-based assessment [22].

Evaluation Metrics for Classification (RQ1-RQ2). We compute precision, recall,
and Fl-score for two experiments: classifying user feedback by NFR type (RQ1)
and by user request type (RQ2). Precision measures the proportion of correctly
predicted labels among all predictions, while recall measures the proportion of
correctly identified labels in the ground truth. Model performance is assessed by
comparing each predicted label (user request or NFR type) with its annotated
counterpart. Scores are calculated per class (e.g., feature request, bug report,
other), along with macro averages. The macro average treats all classes equally.

Evaluation Criteria for Specification Generation (RQ3). For RQ3, the quality of
generated requirement specifications is evaluated qualitatively across six criteria
derived from established specification attributes such as completeness, consis-
tency, and clarity [30]. Each criterion was adapted to suit the characteristics of
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Table 3. Evaluation criteria and scoring used to assess generated specification (RQ3).

Criterion Description and Scoring

Description: Evaluates how well the generated specification follows
the expected structure, ensuring coverage of all sections.

Scoring: Originally 1-8 points (one per correctly included section),
linearly rescaled to 1-5 for consistency; higher is better.
Description: Evaluates the coverage of requirements identified from
user feedback.

Scoring: Rated on a 1-5 scale, with higher scores reflecting greater
completeness of identified requirements from user feedback.
Description: Evaluates how faithfully the generated specification re-
flects user feedback, identifying fabricated requirements.

Scoring: Rated on a 1-5 scale; higher scores indicate greater fidelity
(rescaled from the proportion of fabricated to valid requirements).
Description: Evaluates redundancy and verbosity in the generated
text, indicating how efficiently information is conveyed.

Scoring: Rated on a 1-5 scale, with higher scores reflecting greater
conciseness and lower values indicate increased verbosity.
Description: Evaluates the clarity of generated requirements in terms
of unambiguity, specificity, and interpretability.

Scoring: Rated on a 1-5 scale, with higher scores reflecting greater
clarity and linguistic precision.

Structural Adherence

Completeness

Fidelity

Conciseness

Clarity

automatically generated specifications. Table [3| outlines the evaluation rubric,
which includes six criteria. These dimensions assess structural correctness, cov-
erage of stakeholder input, factual grounding, semantic accuracy, and linguistic
quality. Each criterion follows a defined scoring scheme combining quantitative
(e.g., counts or coverage) and qualitative (e.g., 1-5 scale) measures, supporting
systematic and replicable assessment of specification quality [22].

4.4 Experimental Setup and Procedure

We now describe the computational setup, prompting strategies, and evaluation
procedures used in three experiments (RQ1-RQ3).

Computational Setup All experiments were conducted under consistent hard-
ware and parameter settings to ensure fairness and reproducibility. We evalu-
ated five LLMs (see Sect. , running each model three times per task to reduce
stochastic variance. Default parameters were used, with temperature set to 0 and
a fixed random seed to minimise non-determinism. No hyperparameter tuning
was applied to isolate the effects of prompting strategies. Experiments ran on a
workstation with an NVIDIA RTX 4050 GPU (6 GB VRAM) and 16 GB RAM.
Total runtime per model (3 runs) ranged from 20 min to 2 h for user request
classification (512 reviews) and 2-5 hours for NFR classification (1,278 reviews).

Prompting Strategies We experiment with five prompting strategies (see
Sect. . Prompting strategies are customised for each experiment (RQ1-RQ2).
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Prompting Strategies for Classification (RQ1-RQ2). We apply three prompt-
ing strategies across two classification tasks (user request type and NFR type):
zero-shot, few-shot, and chain-of-thought (CoT) prompting. These strategies
capture increasing levels of reasoning and contextualization while remaining
lightweight and reproducible. We omit more complex prompting (e.g., role-based
or constraint-based), as classification primarily requires consistent label predic-
tion rather than creative or constrained generation. Prompts are refined itera-
tively through a pilot study. Few-shot examples come from our dataset, and CoT
prompts direct models to “think step-by-step before giving the final category”.

Prompting Strategies for Specification Generation (RQ3). We use all five prompt-
ing strategies for the specification generation task. Beyond the three classifica-
tion strategies (zero-shot, few-shot, CoT'), we add constraint-based and role-based
prompting to improve structural coherence and contextual relevance. These
strategies better suit generative tasks that require creativity and controlled out-
put. In the constraint-based setup, prompts specify that outputs follow a defined
structure (e.g., functional and non-functional sections) and include constraints
such as “avoid implementation details” and “ensure each requirement is unique”.

Evaluation Procedures We use quantitative evaluation for classification tasks
(RQ1-RQ2) and qualitative evaluation for specification generation (RQ3).

Evaluation Procedure Classification (RQ1-RQ2). For RQ1 and RQ2, we evaluate
models on the corresponding annotated dataset for each classification experiment
(Section . Each review is processed by the LLM under each prompting setup
(zero-shot, few-shot, CoT), and predicted labels are compared with the ground
truth. We calculate precision, recall, and F1-score per class, along with macro-
and weighted averages. We report mean values over three runs.

Evaluation Procedure for Specification Generation (RQ3). For RQ3, we use 90
annotated reviews sampled from our collected data. Half are taken from the user
request dataset, and the other half from the NFR dataset. The same input is
provided to each LLM under every prompting setup. Each model generates re-
quirements specifications following the template, including Introduction, Func-
tional Requirements, NFRs, and Glossary sections. The first author evaluates
the outputs using the five criteria (see Table|3)). The results are verified through
manual examination of user feedback. The scores are averaged across all samples.

5 Results

RQ1: How well do LLMs classify feedback by NFR type?

To answer RQ1, we evaluated how well LLMs classify user feedback by NFRs
under three prompting strategies: zero-shot, few-shot, and chain-of-thought. Ta-
ble [ reports precision, recall, and F1 scores for each model, with the best results
highlighted in bold. The effectiveness ranges from an F1 score of 0.40 to 0.55,
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with averages of 0.47, 0.49, and 0.51 for the zero-shot, few-shot, and chain-of-
thought strategies, respectively. Across prompting strategies, performance im-
proves steadily from zero-shot to few-shot to chain-of-thought, confirming that
example-based and reasoning-enhanced prompts help LLMs better identify NFR
types. Larger and newer models (Gemma, Llama 3, Mistral) generally outper-
form smaller or earlier ones (Llama 2, Phi-3 Mini). Gemma achieves the highest
overall F1 score (0.55) and precision (0.53) under the chain-of-thought setting,
while Llama 3 records the highest recall (0.59). Mistral performs most consis-
tently across all prompting strategies, ranking near the top in zero-shot and
few-shot modes. In contrast, Llama 2 yields the lowest scores across all metrics,
while Phi-3 Mini remains stable but below the larger models.

Answer to RQ1: LLMs achieve moderate accuracy (F1 ~ 0.47-0.51) for
classifying feedback by NFR type. Chain-of-thought prompting performs
best, with Gemma leading overall (P=0.53, R=0.57, F1=0.55).

Table 4. How well do LLMs classify feedback by NFR type? (RQ1)

Zero-Shot Few-Shot Chain-of-Thought
P R F1 P R F1 P R F1
Llama 2 044 | 036 | 0.40 | 0.49 | 0.39 | 0.43 | 0.52 | 0.46 | 0.49
Llama 3 042 | 0.54 | 0.47 | 0.46 | 0.57 | 0.51 | 0.48 | 0.59 | 0.53
Mistral 0.49 | 0.51 | 0.50 | 0.54 | 0.51 | 0.52 | 0.47 | 0.59 | 0.52
Gemma 0.51 | 048 | 0.49 | 0.51 | 0.49 | 0.50 | 0.53 | 0.57 | 0.55
Phi-3 Mini | 0.44 | 0.54 | 048 | 0.46 | 0.54 | 0.50 | 0.44 | 0.48 | 0.46
Average 0.46 | 0.49 | 047 | 0.49 | 0.50 | 0.49 | 0.49 | 0.54 | 0.51

Model

RQ2: How well do LLMs classify feedback by user request type?

To answer RQ2, we examined how LLMs classify user feedback by request type
under three prompting strategies: zero-shot, few-shot, and chain-of-thought. Ta-
ble [5] presents precision, recall, and F1 scores for each model, with the best
results in bold. Model performance ranges from an F1 score of 0.32 to 0.74. The
average F'1 values are 0.59 for zero-shot, 0.68 for few-shot, and 0.64 for chain-of-
thought prompting. Performance increases notably from zero-shot to few-shot
prompting, while chain-of-thought yields moderate improvements. Larger and
more recent models, such as Llama 3, Mistral, and Gemma, generally achieve
higher accuracy than smaller or earlier ones, including Llama 2 and Phi-3 Mini.
Llama 3 reaches the highest F1 score of 0.74 and recall of 0.75 under the few-
shot setting. Mistral and Gemma perform consistently well across all strategies.
Llama 2 produces the lowest scores, while Phi-3 Mini remains stable but below
the stronger models. Overall, few-shot prompting provides the best results (av-
erage F1 = 0.68); it suggests that including example-based context helps LLMs
more accurately classify user feedback by request type.
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Answer to RQ2: LLMs achieve moderate-to-high average accuracy (F1 =
0.59-0.68) for classifying feedback by user request type. Few-shot prompting
performs best, with Llama 3 leading overall (P=0.72, R=0.75, F1=0.74).

Table 5. How well do LLMs classify user feedback by request type? (RQ2)

Zero-Shot Few-Shot Chain-of-Thought
P R F1 P R F1 P R F1
Llama 2 0.28 | 0.36 | 0.32 | 0.57 | 0.56 | 0.57 | 0.60 | 0.42 0.49
Llama 3 0.77 | 0.67 | 0.72 | 0.72 | 0.75 | 0.74 | 0.71 | 0.70 0.71
Mistral 0.60 0.63 0.62 | 0.69 | 0.74 | 0.71 | 0.65 | 0.72 0.68
Gemma 0.66 | 0.71 | 0.68 | 0.68 | 0.67 | 0.68 | 0.65 | 0.60 0.63
Phi-3 Mini | 0.69 0.51 0.59 | 0.68 | 0.67 0.68 | 0.67 | 0.70 0.69
Average 0.60 0.58 0.59 | 0.67 | 0.68 0.68 | 0.66 | 0.63 0.64

Model

RQ3: How well do LLMs generate requirements specifications?

To answer RQ3, each model was evaluated on five criteria: structure (SA), com-
pleteness (CO), fidelity (FI), conciseness (CN), and clarity (CL), as defined in
Table [3] Table [6] reports results across models and prompting strategies. Over-
all, the models produced moderate-quality specifications (mean=3.1; SD=0.8).
Llama 3 with chain-of-thought prompting and Mistral with few-shot prompt-
ing achieved the highest mean score (3.6), showing strong structure and clarity
(SA=4; CL=5). Llama 2 followed with stable mid-range scores (mean—=3.2-3.4).
Gemma produced the weakest but most consistent outputs (mean = 2.9; SD=0.4).
Phi-3 Mini showed high fidelity and conciseness (FI ~ 4; CN=4-5) but low
structure (SA=1-2) and high variability. Across prompting strategies, few-shot
and chain-of-thought improved structure and clarity, whereas constrained-based
prompting offered limited gains. Most models scored highest in clarity (CL=4-5)
and completeness (CO=4) but lagged with fidelity and conciseness (FI, CN=2-3).

Answer to RQ3: LLMs produced moderate-quality specifications, with
Llama 3 and Mistral performing best; model and prompt choice strongly
influenced output quality.

6 Discussion

Lightweight LLMs show promising potential for analysing user feedback in RE.
Although more efficient and transparent than larger models, they are not yet
suitable for reliable industrial use without further customization.

A) Feedback Classification. In feedback classification, Llama 3 and Mistral
achieved Fl-scores around 0.74 for identifying user request types. This shows
that lightweight models can reliably detect explicit requests such as feature sug-
gestions or bug reports. Their performance in NFR classification was weaker,
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Table 6. LLM performance on requirement specifications (RQ3). SA — Structure; CO —
Compl.; FI - Fidelity; CN — Conciseness; CL — Clarity. Scores are on a 1-5 scale (higher
= better). Bold marks the highest values across all models and prompt strategies.

Model Prompt Strategy | SA (1-5) | CO (1-5) | FI (1-5) | CN (1-5) | CL (1-5) | Mean | SD
Zero-Shot 3 4 3 3 4 3.4 0.49
Few-Shot 3 4 3 2 4 3.2 0.75
Llama 2 Chain-of-Thought 3 4 3 2 4 3.2 0.75
Constraint-based 3 4 3 2 4 3.2 0.75
Role-based 3 4 3 2 4 3.2 0.75
Zero-Shot 3 4 3 2 4 3.2 0.75
Few-Shot 3 4 3 2 4 3.2 0.75
Llama 3 Chain-of-Thought 4 4 3 2 5 3.6 1.02
Constraint-based 3 4 3 2 4 3.2 0.75
Role-based 3 4 3 2 4 3.2 0.75
Zero-Shot 3 3 3 2 4 3.0 0.63
Few-Shot 4 4 3 2 5 3.6 1.02
Mistral Chain-of-Thought 3 4 3 2 4 3.2 0.75
Constraint-based 3 4 3 2 4 3.2 0.75
Role-based 3 4 3 2 4 3.2 0.75
Zero-Shot 2 3 3 3 3 2.8 0.40
Few-Shot 3 3 3 2 4 3.0 0.63
Gemma Chain-of-Thought 3 3 3 2 4 3.0 0.63
Constraint-based 2 3 3 2 4 2.8 0.75
Role-based 3 3 3 2 4 3.0 0.63
Zero-Shot 1 4 4 4 2 3.0 1.22
Few-Shot 2 4 4 4 3 3.4 0.89
Phi-3 Mini | Chain-of-Thought 1 3 4 4 3 3.0 1.10
Constraint-based 1 3 4 5 2 3.0 1.22
Role-based 2 4 3 4 3 3.2 0.75
Average — 2.6 4.0 3.0 2.3 3.8 3.1 0.8

with the best F1l-score reaching 0.55. This result aligns with prior studies where
models also struggled to capture implicit qualities like usability or reliability [23].
The limitation likely stems from two factors. Lightweight LLMs find it difficult
to interpret subtle, context-dependent expressions. They also lack sufficient ex-
posure to RE-specific terminology and training data. Structured prompting with
few-shot or reasoning examples led to only minor improvements. These findings
suggest that contextual examples and reasoning cues can enhance understand-
ing. However, overall accuracy remains moderate. In practice, this may produce
noisy classifications that mislead analysts. As a result, important feedback can be
missed, while irrelevant comments may be misclassified as critical requirements.

B) Requirements Specification Generation. Lightweight LLMs produced
requirement specifications that were generally clear, coherent, and complete.
They expressed user feedback readably but often failed to follow formal struc-
tures. Their outputs were sometimes verbose and required editing for conciseness
and compliance with standards. Although the generated text was fluent, the
models occasionally fabricated requirements, adding information absent from
the original feedback. As a result, the content appeared plausible but not always
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accurate or grounded. In practice, these limitations mean lightweight LLMs can
assist analysts by drafting initial requirement statements or summarising feed-
back. However, they still require human review to ensure accuracy and proper
structure. With further refinement and adaptation, they could serve as drafting
and documentation aids rather than autonomous specification generators.

C) Implications for Requirements Engineering. Lightweight LLMs can
support RE tasks such as feedback filtering, classification, and initial specifi-
cation drafting. However, they cannot yet replace human analysts. Their mod-
erate precision and recall make them unreliable for use without supervision.
These weaknesses may lead to missed insights or false positives that increase
review effort. The generated outputs are clear and coherent but often lack fac-
tual grounding and formal consistency. This limits their value for downstream
RE tasks, e.g., validation, and traceability. In several tasks, their performance is
similar to earlier ML approaches [ITI23]. Larger models alone do not guarantee
better outcomes in RE. Future work should adapt models to RE contexts using
prompt design, fine-tuning, and retrieval-based approaches. These methods can
improve accuracy and help lightweight LLMs better support early RE tasks.

7 Threats to Validity

Internal Validity. The main threat lies in the manual evaluation of generated
requirement specifications by a single evaluator, without validating its reliability.
This introduces potential subjectivity. To mitigate this, we applied a systematic
rubric with clear criteria and examples of both high- and low-quality specifica-
tions. The rubric was used consistently across all outputs. In addition, prompts
and model parameters were standardised to ensure uniform conditions.

External Validity. We used two publicly available datasets from different do-
mains to reduce domain bias. Their diverse vocabulary helps generalisability,
though an app review represents only one feedback type. Results may not gen-
eralise to industrial datasets or other contexts such as issue trackers. Moreover,
the study focused on lightweight LLMs; larger models may yield different results.

Construct Validity. We employed standard precision, recall, and F1-score met-
rics for classification and a rubric assessing completeness, consistency, and cor-
rectness for generation. As qualitative evaluation relied on one evaluator, some
interpretation bias may persist. Prompt phrasing may also influence results; this
was mitigated by systematically applying established prompting strategies.

Conclusion Validity. All models were tested under identical settings and
prompts. However, the limited sample size for specification generation lowers sta-
tistical power, and no inferential tests were applied, making results exploratory.
While precision and recall were key metrics, tasks may favour one over the other,
and F1 may not always be optimal [5]. Our aim was to assess overall practical
effectiveness rather than examine differences across RE-specific tasks.



From Online User Feedback to Requirements: An Empirical Study 13

8 Related Works

Online feedback analysis has long supported requirements and software engineer-
ing, with many automated methods proposed [2[27/11]. Earlier work relied on
traditional ML and NLP methods for tasks such as feedback classification, topic
detection, and opinion extraction [11I34]. Our study takes a new direction by ap-
plying LLMs to both established classification tasks and a novel one: generating
requirements specification [3I], a capability beyond earlier approaches [9]. Prior
work also highlighted the lack of tools for automated requirements generation
from user feedback [12]; we address this gap by evaluating lightweight LLMs
across both classification and generation tasks [§].

Previous studies rarely ensured reproducibility or revisited results with newer
AT methods [I1]. We emphasise transparent experimentation by benchmarking
lightweight models across RE tasks and releasing a full replication package for
open, comparative research. While many recent works rely on proprietary mod-
els such as GPT [8I33], we focus on open, lightweight alternatives to improve
transparency and reproducibility. Unlike prior LLM-based studies, our work ap-
plies lightweight LLMs to online feedback analysis [33]. To our knowledge, this
is the first study to evaluate lightweight LLMs for feedback-driven requirements
development, supported by a replication package for reproducible RE research.

9 Conclusion

Analysing online user feedback is important for RE tasks, yet automation re-
mains challenging. This study presents the first systematic evaluation of open,
lightweight LLMSs for feedback-driven RE. Five models were evaluated with mul-
tiple prompting strategies on three RE tasks: classifying feedback by user request
and NFR type, and generating requirement specifications.

Lightweight LLMs classified user request types accurately (F1 = 0.74) but
performed moderately for NFRs (F1 ~ 0.55). Structured prompting improved
results slightly. Generated specifications were generally complete and coherent
but often verbose and sometimes included fabricated requirements. Lightweight
LLMs can support early RE activities, but still require human oversight.

We release our evaluation framework and replication package to support fur-
ther research [26]. Future work should explore fine-tuning lightweight LLMs,
developing retrieval-augmented pipelines, and creating domain-adapted bench-
marks to improve their accuracy and reliability in RE.
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